Recent breakthroughs on completing general period mappings
Abstract:
Since Griffiths’ question in the 70’s, it is a long-standing problem to find a completion of general period mapping with significant geometric and Hodge-theoretic meaning. The classical theories on the compactification of locally symmetric varieties by Satake—Baily—Borel and Mumford et al provide such completions to a very limited set of “classical” cases, while the problem has been almost completely open for non-classical cases until recent years. I will report the latest progress in this direction including several of my papers. Collaborators include Chongyao Chen (IMFP Shanghai), Colleen Robles (Duke), Jacob Tsimerman (Toronto).